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A gradient smoothing method (GSM) based on strong form of governing equations for solid mechanics
problems is proposed in this paper, in which gradient smoothing technique is used successively over the
relevant gradient smoothing domains to develop the first- and second-order derivative approximations by
calculating weights for a set of field nodes surrounding a node of interest. The GSM is found very stable and
can be easily applied to arbitrarily irregular triangular meshes for complex geometry. Unlike other strong
form methods, the present method has excellent stability that is crucial for adaptive analysis. An effective
and robust residual based error indicator and simple refinement procedure using Delaunay diagram are
then implemented in our GSM for adaptive analyses. The reliability and performance of the proposed GSM
for adaptive procedure are demonstrated in several solid mechanics problems including problems with
singularities and concentrated loading, compared with the well-known finite element method (FEM).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of computer technology in the past
few decades, a broad range of numerical methods have been devel-
oped for different types of problems and achieved great success, e.g.,
the finite element method (FEM), finite difference method (FDM),
finite volume method (FVM) and recently the meshfree methods
[1–3]. In advanced design of products of high precision, adaptive
analysis is becoming an important tool in practical numerical com-
putations [4]. It is a fundamental tool to obtain numerical solutions
with a desired accuracy. In an adaptive procedure, there are three
essential ingredients: (1) an effective and stable numerical method
for arbitrary problem domains and irregular meshes; (2) a tool for
estimating the error of the numerical solution; and (3) an algorithm
to refine the problem domain. The first ingredient is a prerequisite,
without which an adaptive process will break down. The error es-
timator is crucial in assessing the local and global errors in the nu-
merical solution at a stage of analysis, whereby a decision can be
made on whether a refinement is required. The third is performed
according to the error information provided by the error estimate.
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The effectiveness and efficiency of all these three pieces of techniques
are critical to the performance of an adaptive analysis. To conduct
a posteriori error estimation, two values of a quantity—a computed
value and a reference value—are usually required. The first is the
raw data of the numerical solution while the second is derived from
the raw data via postprocessing (smoothing or projection). In FEM,
it is well known that the raw stresses (or derivatives) do not pos-
sess inter-element continuity and have a low accuracy at nodes and
element boundaries. The improved values are obtained by smooth-
ing the inter-element discontinuity. The difference between the raw
and improved values forms a basis for error estimation in FEM so-
lution. Detailed descriptions of this approach can be found in FEM
literatures, e.g., by Zienkiewicz [5].

To establish an adaptive finite element procedure, one of the
most important components is a robust automatic mesh genera-
tion scheme. However, to develop and implement automatic mesh
generators with good control of element size and shape is not an
easy task. During the last decade, many research efforts have been
devoted to this area [6,7] and yet it still remains an active research
topic in computational mechanics and geometry. Currently, auto-
matic mesh generators of triangular elements for complex geometry
are available. Unfortunately, the triangular elements used in FEM
are known to be 'too stiff ' and inaccurate. Compared with the finite
element method, the meshfree methods enjoy much more flexibility
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in model generation since they can approximate field variables en-
tirely based on a group of discrete nodes and require no predefined
node connectivity. For meshfree methods that require background
cells, triangular cells can be used, which will not affect the accu-
racy in the solutions. Nodes used in many meshfree methods can
be irregular or unstructured. Nodes can be quite freely inserted or
deleted without worrying too much about the connectivities. There-
fore, the meshfree methods are particularly attractive for the de-
velopment of adaptive strategies. Several adaptive procedures and
error estimates for meshfree methods have been proposed. Duarte
and Oden [8] derived an error estimator for the h-p cloud methods
that involves only the computation of interior residuals and residu-
als where Neumann boundary conditions are prescribed. Liszka et al.
[9] built discrete models of boundary-value problems with different
adaptive strategies. Chung et al. [10], Gavete et al. [11] and Lee and
Zhou [12] proposed adaptive refinement procedures and error indi-
cators for the element-free Galerkin (EFG) method. Park et al. [13]
developed a posteriori error estimates and an adaptive refinement
scheme of first-order least-squares meshfree method.

Among these developed adaptive meshfree methods, the weak
form methods, e.g., EFG method, are most well established. The
solutions of weak form methods are usually very stable. In contrast,
the development of meshfree strong form methods is rather slug-
gish. Available literatures for the meshfree strong form methods
are still very limited. However, the meshfree strong form method
possesses many good features for adaptive analysis due to its sim-
plicity. The strong formulation is much simple, straightforward and
easy to implement. The meshfree strong form method is considered
a truly meshfree method as it does not even require background
cells that are needed in weak form method for integration. Such
distinct features facilitate the refinement or coarsening scheme in
the adaptive scheme. Moreover, unlike weak form methods, strong
form methods need no integration and hence no mapping is needed.

However, the instability problem has been a key factor that lim-
its the application of meshfree strong form methods that use local
nodes. Researchers have introduced several stabilization schemes
[14,15], in which stabilization factors need to be determined. Many
efforts have been devoted to point collocation methods based on
reproducing kernel approximations [16–18]. Currently, most of the
'full-proof' strong form method is still very much relying on the
structured grid and restricted regular domain. Althoughmethods like
generalized finite difference method (GFDM) [19,20] can be used for
irregular domain and unstructured grid, a proper stencil (node selec-
tion) is somehow still needed for function approximation. Such in-
convenience procedures give difficulties to the strong form method
in the adaptive process. In addition, since nodal distribution during
the adaptation can become highly irregular, a 'proper' stencil can be
costly and difficult to form.

In this paper, a gradient smoothing method (GSM) is proposed
based on strong form governing equations. Gradient smoothing tech-
nique is utilized to construct first- and second-order derivative ap-
proximations by systematically computing weights for a set of nodal
points surrounding a node of interest. Three types of different do-
mains for the gradient smoothing operations are devised. The strong
form of governing equations is directly discretized at nodes using
gradient smoothing repeatedly over relevant gradient smoothing do-
mains. These computations can be easily performed based on an
irregular triangular mesh that can be generated automatically for
complex geometries. The stencil analyses of weighting coefficients
have been conducted for the Laplace operators, and favorable weight
distributions are found. The proposed GSM can effectively overcome
the instability issue, while retaining the strong form feature of sim-
plicity in formulation procedures which is particularly suitable for
adaptive analysis.

A residual based error indicator is then adopted in our GSM for
adaptive analyses. By evaluating the residual of the governing equa-

tion for each triangular cell in the domain, error indicator effectively
identifies the necessary regions to be refined. Simple refinement pro-
cedure using Delaunay diagram is adopted in the adaptive scheme.
Additional nodes can be inserted into the domain easily without
worrying about the nodal connectivity and remeshing the domain.

The layout of this paper is as follows: Section 2 theoretically for-
mulates the GSM. In Section 3, a brief description of a posteriori error
indicator based on residual of the governing equation is provided.
Section 4 illustrates the capabilities of the present method through
some numerical examples including different levels of stress concen-
tration. The performance of the proposed strategy is also assessed
by comparing the convergence rate obtained with those by uniform
refinement. Conclusions are stated in Section 5.

2. Gradient smoothing method (GSM)

2.1. Gradient smoothing

Consider a two-dimensional elastostatic problem governed by the
following equilibrium equation in the domain �:

Lu = f in � (1)

with essential (Dirichlet) boundary conditions

u = u on �u (2)

and natural (Neumann) boundary conditions

Bu = g on �t (3)

where L, B are the differential operators, u is the field variable and f,
g are external force vectors. Eq. (3) is derived using Cauchy's formula

�ijnj − ti = 0 (4)

In the strong form methods, Eqs. (1)–(3) are directly collocated
at the field nodes in the problem domain and on the boundaries,
respectively. The discretized system governing equations are given
as follows:

L(ui) = fi in � (5)

with Dirichlet boundary conditions

ui = ui on �u (6)

and Neumann boundary conditions

B(ui) = gi on �t (7)

where subscript "i” denotes the collocation point.
The governing equations (5)–(7) can be collocated at their cor-

responding field nodes then be assembled and expressed in the fol-
lowing matrix form:

KU = F (8)

whereK is the stiffnessmatrix, F is the force vector andU is the vector
of unknown nodal values. Note that the stiffness matrix resulted
from collocation is generally unsymmetric. The vector of unknown
nodal values can be easily solved as

U = K−1F (9)

if K is not singular and well-conditioned.
In the present method, the problem domain � is discretized by

triangular cells as shown in Fig. 1. For the i-th node, a smoothing do-
main �i is generated by sequentially connecting the centroids with
mid-edge points of surrounding triangular cells. �i is the boundary
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Fig. 1. Illustration of triangle cells and gradient smoothing domains defined in GSM.

of the smoothing cell �i. A smooth operation to the gradient of field
variable u is adopted as follows [21]:

∇hu(xi) =
∫
�i

∇hu(x)�(x − xi) d�i (10)

Integration by parts of Eq. (10) leads to

∇hu(xi) =
∫
�i

uh(x)�n(x)�(x − xi) d� −
∫
�i

uh(x)∇�(x − xi) d� (11)

where � is a smoothing function. �n denotes the unit normal vector
of any one of domain faces, as shown in Fig. 1.

Consider aweighted Shepard function [22] as the smoothing func-
tion

�(x − xi) = �(x − xi)∑M
j=1�(x − xj)Aj

(12)

where Ai = ∫
�i

d� is the area (or volume) of the representative do-
main (smoothing domain) of the i-th field node obtained from the
diagram in Fig. 1. The weighted Shepard function in Eq. (12) meets
the following weighted partition of unity:

M∑
j=1

�(x − xj)Aj = 1 (13)

For simplicity, a piecewise constant function � is used in this work:

�(x − xi) =
{
1, x ∈ �i
0, x /∈�i

(14)

Consequently the smoothing function is

�(x − xi) =
{
1/Ai, x ∈ �i
0, x /∈�i

(15)

Substituting Eq. (15) into Eq. (11), the smoothed gradient of field
function u is obtained:

∇hu(xi) =
∫
�i

uh(x)�n(x)�(x − xi) d�

= 1
Ai

∫
�i

uh(x)�n(x) d� (16)

Note that the choice of constant � makes the second term on the
right-hand side of Eq. (11) vanish, and the area integration be-
comes line integration along the edges of smoothing cell. Simi-
larly, by successively using the smoothing procedures described in

Eqs. (10)–(16), the second-order gradients (derivatives) at the same
location can be evaluated easily by differentiating Eq. (16) as

∇2u(xi) = 1
Ai

∫
�i

∇hu(x)�n(x) d� (17)

In the current study, three types of gradient smoothing domains
(GSD), which are used for approximation of spatial derivatives, are
constituted on the basis of primitive unstructured triangular meshes,
as shown in Fig. 1. The first is node-associated gradient smoothing
domain (nGSD) that is adopted for the approximation of derivatives
at any field node of interest. It is formed by connecting relevant
centroids of the triangles with midpoints of the corresponding
connecting edges. The second is a triangular cell itself formed by
primitive mesh, which is employed for approximating derivatives
(first-order) at the centroid of the cell. It is called centroid-associated
gradient smoothing domain (cGSD) here. The third is named
midpoint-associated gradient smoothing domain (mGSD) used for
the calculation of gradients (first-order derivatives) at the midpoint
of an edge of interest. The adopted favorable mGSD, as shown in
Fig. 1, is formed by connecting the end-nodes of an edge of interest
with the centroids of the triangles on the both sides of the edge.
For approximation of the first-order derivative at any field node,
only nGSD is used. For the second-order derivatives at field nodes,
the values of the first-order derivative at the centroid of the trian-
gles and midpoint of the connecting edges surrounding the node of
interest are first needed. They are calculated using the cGSD and
mGSD, respectively. The same nGSD is also used for the approxi-
mation of the second-order derivatives at corresponding field node.
To calculate the gradients at midpoints of edges and centroids of
cells with mGSD and cGSD, Eqs. (16) and (17) can also be used for
approximation in the similar manner. This novel combination of
use of the three types of domains provides stability and ensures
the accuracy of the solution. Details will be further described in the
following subsection.

2.2. Formulae for derivative approximation

We need now to evaluate the integrals along the boundaries of
various types of GSDs. In this paper, two-point quadrature (trape-
zoidal rule) [23] is used for approximation of derivatives at nodes,
midpoints and centroids. The quadrature needs the values of field
variable and its gradients at the two end-nodes of each smoothing
domain edge (the midpoint of the edge of interest and the centroid
of the cGSD).

From Eq. (16) and using the two-point quadrature, the first-order
derivatives of the field variable u are obtained

�ui
�x

= 1
Ai

ni∑
k=1

{
1
2
(�Sx)

(L)
ijk

[(um)ijk + (uc)
(L)
ijk

]

+1
2
(�Sx)

(R)
ijk

[(um)ijk + (uc)
(R)
ijk

]
}

(18)

�ui
�y

= 1
Ai

ni∑
k=1

{
1
2
(�Sy)

(L)
ijk

[(um)ijk + (uc)
(L)
ijk

]

+1
2
(�Sy)

(R)
ijk

[(um)ijk + (uc)
(R)
ijk

]
}

(19)

where

(�Sx)
(L)
ijk

= �S(L)ijk
(nx)

(L)
ijk

(20)

(�Sy)
(L)
ijk

= �S(L)ijk
(ny)

(L)
ijk

(21)

(�Sx)
(R)
ijk

= �S(R)ijk
(nx)

(R)
ijk

(22)
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(�Sy)
(R)
ijk

= �S(R)ijk
(ny)

(R)
ijk

(23)

In above equations, �Sx and �Sy are the two components of the
length of a domain edge. nx and ny represent the two components
of the unit normal vector of a domain edge. i denotes the node of
interest and jk is the other end-node of the edge linked to node i
(see Fig. 1). Superscripts (L) and (R) are pointers to the two domain
faces associated with the edge of interest, ijk. The total number of
supporting nodes within the stencil of node i is denoted by ni. These
geometrical parameters are computed and stored before the inten-
sive calculation is started. um and uc denote values of field variable
at midpoints of mesh-edges and centroids of triangular cells, respec-
tively. These values are calculated by arithmetic averaging of func-
tion values at related nodes, respectively, in the fashion of

(um)ijk =
ui + ujk

2
(24)

(uc)
(L)
ijk

=
⎧⎨
⎩
(ui + ujk + ujk+1

)/3, k = 1, 2, . . . ,ni − 1

(ui + ujni + uj1 )/3, k = ni
(25)

(uc)
(R)
ijk

=
⎧⎨
⎩
(ui + ujk + ujk−1

)/3, k = 2, 3, . . . ,ni

(ui + uj1 + ujni )/3, k = 1
(26)

Analogous to the discretization at field nodes described above,
the first-order derivatives at midpoints of connecting edges
((∇um)ijk ) and centroids of the triangles ((∇uc)

(L)
ijk

and (∇uc)
(R)
ijk

) can

also be approximated with the gradient smoothing technique using
Eqs. (18)–(26), but based on the related mGSD and cGSD, respec-
tively. Similarly, using Eq. (17), the second-order derivatives are
given by

�2ui
�x2

= 1
Ai

ni∑
k=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
(�Sx)

(L)
ijk

[
�
�x

(um)ijk + �
�x

(uc)
(L)
ijk

]

+1
2
(�Sx)

(R)
ijk

[
�
�x

(um)ijk + �
�x

(uc)
(R)
ijk

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(27)

�2ui
�y2

= 1
Ai

ni∑
k=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
(�Sy)

(L)
ijk

[
�
�y

(um)ijk + �
�y

(uc)
(L)
ijk

]

+1
2
(�Sy)

(R)
ijk

[
�
�y

(um)ijk + �
�y

(uc)
(R)
ijk

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(28)

�2ui
�x�y

= 1
Ai

ni∑
k=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
(�Sy)

(L)
ijk

[
�
�x

(um)ijk + �
�x

(uc)
(L)
ijk

]

+1
2
(�Sy)

(R)
ijk

[
�
�x

(um)ijk + �
�x

(uc)
(R)
ijk

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(29)

All the first-order derivatives used in Eqs. (27)–(29) are approxi-
mated as previously described.

2.3. Analyses of discretization stencil

Before conducting intensive numerical investigations, careful the-
oretical studies of the stencils of supporting nodes for the nodewhere
derivatives are approximated using GSM are carried out. The objec-
tive for stencil analyses is to validate if the GSM satisfies the basic
principles of numerical discretization. The stencils for approximat-
ing the gradients (�ui/�x,�ui/�y) and Laplace operator using both
uniform Cartesian and equilateral triangular meshes are focused in
this section.

In the stencil analyses, the following five basic rules are consid-
ered to assess the quality of a stencil resulting from a discretization
scheme: (a) consistency at each domain face; (b) positivity of coef-
ficients of influence; (c) negative-slope linearization of the source
term; (d) sum of the neighbor coefficients, and (e) the compactness

t1

t2t3

t4

t5 t6

t0

c6 c7 c8

c1

c2c3c4

c5 c0

Fig. 2. Stencils for approximated gradients discretized on (a) uniform Cartesian
mesh; (b) equilateral triangular mesh.

of the stencil. The first four rules are summarized by Patankar [24]
with consideration of solutions with physically realistic behavior and
overall balance. To satisfy Rule (a), it requires that the same expres-
sion of approximation must be used on the interface of two adjacent
GSDs, so that when the gradient smoothing technique is applied to
the GSDs, the local conservation of quantities is automatically en-
sured and so for the global conservation. Rule (b) requires that the
coefficient for the node of interest and the coefficients of influence
must be positive, once the discretization equation is written in the
form of aiiui =∑ni

k=1aijkujk + bi. Rule (c) relates to the treatment of
the source terms. As addressed by Patankar [24], it is essential to
keep the slope of linearization to be negative, since a positive slope
can lead to computational instabilities and physically unrealistic so-
lutions. Rule (d) tells aii =∑ni

k=1aijk . Barth [25] has proposed a few
lemmas to address the necessity of positivity of coefficients to sat-
isfy a discrete maximum principle that is a key tool in the design and
analysis of numerical schemes suitable for non-oscillatory discon-
tinuity (for example, shock). At steady state, non-negativity of the
coefficients becomes sufficient to satisfy a discrete maximum princi-
ple that can be applied successively to obtain global maximum prin-
ciple and stable results. His statements reiterate the importance of
Rule (b) as mentioned by Patankar [24]. In addition, as commented
by Barth [25], the very first layer of nodes surrounding the node of
interest should be included in its stencil. Moreover, as the stencil
becomes larger, not only the computational cost increases, but even-
tually the accuracy decreases as less valid data from further away is
brought into approximation. Thus, for the concerns about numerical
accuracy and efficiency, Rule (e) on the compactness of the stencil
is adopted as additional factor for the assessment of discretization
scheme of GSM.

Fig. 2 demonstrates the stencils for approximated gradients
(�ui/�x,�ui/�y) and (�2ui/�x2 + �2ui/�y2). For the first-order
derivatives (�ui/�x,�ui/�y), the stencil is c1 = ( 38 , 0), c2 = ( 1

16 ,
1
16 ),

c3 = (0, 38 ), c4= (− 1
16 ,

1
16 ), c5= (− 3

8 , 0), c6= (− 1
16 ,− 1

16 ), c7= (0,− 3
8 ),

c8 = ( 1
16 ,− 1

16 ) and c0 = (0, 0) for uniform Cartesian mesh. It is
observed that the stencil is identical to that of six-point based
central-differencing scheme in the FDM. This finding con-
firms that when uniform Cartesian meshes are used, the GSM
is identical to the FDM. The GSM, however, works for ir-
regular meshes. The stencil on equilateral triangular mesh is

t1 = ( 13 , 0), t2 = ( 16 ,
√
3
6 ), t3 = (− 1

6 ,
√
3
6 ), t4 = (− 1

3 , 0), t5 = (− 1
6 ,−

√
3
6 ),

t6 = ( 16 ,−
√
3
6 ) and t0 = (0, 0). This stencil is identical to that

of interpolation method using six surrounding nodes. Note that
for irregular triangular meshes, the interpolation method will
fail as addressed by Liu [1], but our GSM still performs well,
as will be demonstrated in the section on numerical examples.
This is due to the crucial stability provided by the smoothing
operation.
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Table 1
Truncation errors in the approximation of first-order derivatives in GSM

Type of mesh Truncation error

Uniform Cartesian Ox(h2) = −h2

(
5
24

�3uij

�x3
+ 1

2
�3uij

�x�y2

)
+ O(h3)

Oy(h2) = −h2

(
5
24

�3uij

�y3
+ 1

2
�3uij

�x2�y

)
+ O(h3)

Equilateral triangular Ox(h2) = −h2

(
1
24

�3ui

�x3
+ 1

8
�3ui

�x�y2

)
+ O(h3)

Oy(h2) = −h2

(
1
24

�3ui

�y3
+ 1

8
�3ui

�x2�y

)
+ O(h3)

Table 2
Truncation errors in the approximation of Laplace operator in GSM

Type of mesh Truncation error

Uniform Cartesian O(h2) = − h2

12

(
�4uij

�x4
+ 3

�4uij

�x2�y2
+ �4uij

�y4

)
+ O(h3)

Equilateral triangular O(h2) = − h2

16

(
�4ui

�x4
+ 2

�4ui

�x2�y2
+ �4ui

�y4

)
+ O(h3)

Compact stencils for approximated Laplace operator (�2ui/�x2 +
�2ui/�y2) with quite favorable weighting coefficients are obtained on
both uniform Cartesian (c1=c3=c5=c7= 1

2 , c2=c4=c6=c8= 1
4 , c0=3)

and equilateral triangular (c1 = c2 = c3 = c4 = c5 = c6 = 2
3 , c0 = 4)

meshes, as shown in Fig. 2. Truncation errors in the approximation
of first- and second-order derivatives with the present GSM are also
derived using Taylor series expansion based on uniform Cartesian
mesh and equilateral triangular mesh, respectively, as summarized
in Tables 1 and 2. It is clear that GSM is of second-order accuracy. This
is further confirmed when the GSM is used to approximate solutions
to numerical examples in the following section.

3. Adaptive scheme

A good error indicator is of great importance in the adaptive
analysis. In this paper, a robust error indicator based on residual of
the governing equations [26] is adopted. The residual based error
indicator provides a good measurement for the quality of the lo-
cal approximation and the global accuracy of the solution. The de-
tails of the error indicator and refinement procedures are given as
follows.

3.1. Error indicator

In this adaptive scheme, the same set of triangular cells used for
GSDs is used. The error indicator for a triangular cell is computed by
evaluating the residual of the strong form governing equations at the
centroid of the triangular cell, as shown in Fig. 1. In this work, we
use two types of error indicators: local and global error indicators.
The local indicator is used to determine the cells that need to be
refined, and the global error indicator is used to control the iterations
of refinement. The local error indicator is defined as

�j =
∫

‖Lu − f‖L2 d� ≈ 1
3
Aj‖Luj − fj‖L2 (30)

where Aj is the area of the j-th cell, and ‖Luj − fj‖L2 is the L2 norm
of the residual for the governing equation evaluated at the center of
corresponding cell by simple interpolation using the nodal values of
the displacements.

With the above definition of the local error indicator, the global
error indicator is estimated using the global residual norm that can

Cell a

Cell b

Fig. 3. Illustration of the refinement procedure: (◦) old node; (•) new node.

be easily obtained as

�g =
√∫

(‖Lu − f‖L2 )
2 d� ≈

√√√√√ nc∑
j=1

[
1
3
Aj(Luj − fj)

]2
(31)

where nc is the total number of the triangular cells.

3.2. Refinement procedure and stopping criterion

The refinement criterion for the j-th cell in our adaptive scheme
is that when

�j��l max
1� i�nc

(�i) (32)

cell j is refined, where �l is a local refinement coefficient defined by
the analyst. Eq. (32) simply leads that a certain percentage of cells
that have maximum errors are refined. In advance, the triangular
cells are classified into two groups: interior cells and edge cells.
An interior cell is a cell that has no edge on the boundaries of the
problem domain, and an edge cell is a cell which has at least one
edge on the boundaries. For example, cell a and cell b are interior
and edge cells, respectively, as shown in Fig. 3. Then if this interior
cell needs to be refined, a new node will be added at the centroid
of the triangle; for an edge cell, two new nodes will be added at the
centroid and the midpoint of the edge which is on the boundaries
(see Fig. 3). Finally, the formation of the newmesh will be performed
using the Delaunay technique based on the new nodes, as sketched
in Fig. 3.

The estimated global residual norm defined in Eq. (31) is used as
an indicator for termination criterion of the adaptive process. The
stopping criterion is that when

�g��g�mg (33)

is met the adaptive process will be terminated, where �g is the global
residual tolerant coefficient and �mg is the allowablemaximumvalue
of global residual error throughout the adaptive process.

4. Numerical examples

In the numerical studies, a norm of the true error for field variable
u is defined as

eu =
√√√√∑

(unumerical − uanalytical)2∑
(uanalytical)2

(34)

where uanalytical is the analytical solution and unumerical, the numer-
ical solution.

4.1. Patch test

In the first example, both standard patch test with maximum
(full) essential boundaries called essential-patch-test here and a
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Fig. 4. Patches of five nodes in the essential-patch-test.

patch test with maximum natural boundaries called natural-patch-
test here are conducted using the present GSM. For essential-patch-
test, six different patches of a solid are first examined as shown in
Fig. 4. All patches have only five field nodes: four corner nodes and
one inner node whose location varies inside the domain. The di-
mension of the patch is 1× 1, and the material properties are taken
as Young's modulus E = 1.0 and Poisson's ratio 	 = 0.25. The dis-
placements are prescribed on the outside boundaries using a linear

function of x and y:

ux = x + y and uy = x − y (35)

To satisfy the patch test, it requires that the displacements of any
interior nodes should be given by the same linear functions in the
patch test. As given in Table 3, all six patches have passed the stan-
dard patch test to machine accuracy. It is found that all patches have
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Table 3
True error norms of displacements for essential-patch-test

Patch Error norm of ux Error norm of uy

Patch a 6.2944E−16 6.3624E−16
Patch b 1.6149E−16 2.7057E−16
Patch c 2.1959E−16 3.4147E−16
Patch d 1.6785E−16 5.3408E−16
Patch e 1.8025E−16 3.2913E−16
Patch f 9.8661E−16 2.3039E−16

Fig. 5. (a) Patches for the natural-patch-test: a uniform axial traction along the right
end of the patch; (b) patch with 35 regular nodes; (c) patch with 35 irregular nodes.

the same level of accuracy regardless of the irregularity of the cells
in the patches. This demonstrates the good stability of the proposed
GSM.

In natural-patch-test, two different patches are subjected to a
uniform axial traction of unit intensity along the right end of the
cantilever beam, as shown in Fig. 5. There are 35 nodes regularly dis-
tributed in the first patch (see Fig. 5(b)) and irregularly distributed
in the second patch (see Fig. 5(c)). The dimension of the cantilever
beam is 3.0×6.0. The material properties are also taken as E=1.0 and
	=0.25. The exact solutions of the displacements for this problem are

ux = x and uy = −y/4 (36)

Table 4
True error norms of displacements for natural-patch-test

Patch Error norm of ux Error norm of uy

Regular nodes 1.1019E−14 7.9795E−14
Irregular nodes 8.5544E−14 2.7266E−12

It is observed that the two patches of both regular and irregular
node distributions pass the higher-order patch test to machine
accuracy, as given in Table 4. This shows again that the GSM has
excellent stability.

It is known that the essential-patch-test is more critical to meth-
ods based on global weak-forms, and the natural-patch-test is, on
the other hand, more critical to methods based on strong forms [2].
Our GSM passes both, which proves numerically that GSM is capable
of producing linear fields regardless of types of boundary condition,
and hence the GSM solution will converge to any high order contin-
uous fields. More details of conducting the patch tests can be found
in Refs. [1,2,5].

4.2. Poisson's equation with a sharp peak

In the second example, we test further the stability, accuracy,
and the peak capturing ability of our GSM using adaptive scheme,
and study a Poisson's problem whose solution has a very sharp peak.
Such a Poisson's equation is defined as

∇2u = [−400 + (200x − 100)2 + (200y − 100)2]

× e−100(x−(1/2))2−100(y−(1/2))2 (37)

in the domain of�: [0, 1]×[0, 1], with Neumann boundary conditions,

�u
�n

= 0 along �t: x = 0 and y = 0 (38)

and Dirichlet boundary conditions,

u = 0 along �u: x = 1 and y = 1 (39)

The analytical solution for this problem is given as

u = e−100(x−(1/2))2−100(y−(1/2))2 (40)

Because the analytical solution is available for this problem, the true
error in the numerical solution of GSM can be examined.

The Poisson's equation is first solved using our GSM with the six
regular distributions of 11 × 11, 16 × 16, 21 × 21, 30 × 30, 46 × 46
and 61 × 61 (=3721) field nodes. Four selected node distributions
(regular left triangular meshes) are shown in Fig. 6. The overall true
error norm of the field variable u is reduced from 33.54% to 0.51% as
the mesh is refined uniformly, as given in Table 5. This shows that
the present GSM is very stable and accurate. The Poisson's equa-
tion is now studied again using our GSM, but with adaptive analy-
sis. The initial mesh has 121 regularly distributed nodes (see Fig. 6).
The adaptive procedure ends up at fifth iteration step with 1107 ir-
regularly distributed nodes in the problem domain. The local pre-
defined refinement coefficient is �l = 0.05 and the global residual
tolerant coefficient is set as �g = 0.1. Due to the presence of sharp
peak, most of the nodes are inserted automatically into the high gra-
dient region as shown in Fig. 7. This demonstrates the fact that our
GSM is capable of capturing the 'peak'. From Fig. 8, one can observe
that the estimated global residual is reduced steadily. This shows
the excellent stability of the present GSM, even for extremely irreg-
ularly distributed nodes. While estimated global residual norm is re-
duced in the adaptive process, the true error norm of field function
u is reduced from 33.54% to 0.56% as given in Table 6. Compared
with the uniform refinement with 3721 regular nodes, the similar
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Fig. 6. Node distributions of uniform refinement for Poisson's equation with a sharp peak at the center.

Table 5
True error norms of uniform refinement for Poisson's equation with a sharp peak

No. of field nodes 121 256 441 900 2116 3721
Error norm (%) 33.54 9.02 4.84 2.22 0.91 0.51

accuracy can be obtained using the adaptive refinement with only
1107 nodes. The comparison of convergence rate (R) between uni-
form and adaptive refinements is plotted in Fig. 9, where h is the
averaged cell size. The convergence rate for the uniform refinement
is found to be about 2.07 that conforms the theoretical prediction of
2.0 as given in Table 1. The adaptive refinement using GSM achieves
a convergence rate of about 3.14 for field function u which is much
higher compared with the uniform refinement.

The GSM solutions for field function u along the line y = 0.5 at
the first and fifth (final) steps are plotted with analytical solution in
Fig. 10. It is clear that this adaptive scheme is effective to improve
in an automatically manner the accuracy of the solution for field
function u. The three-dimensional plots of the approximated field
function and its derivatives at the final step are provided in Fig. 11.
It shows not only the approximated field function but also field
function derivatives are in very good agreement with the analytical
solutions in Eq. (40).

4.3. Infinite plate with a circular hole

This numerical example is a stress analysis of an infinite plate
with a central circular hole subjected to a unidirectional tensile load
p = 1.0 in the x-direction. A plane strain problem is considered. The

problem has stress concentration near the hole, and hence is a good
test of our adaptive GSM for stress concentration capturing. Due to
the symmetry, only the upper right quadrant of the plate is modeled,
as shown in Fig. 12. The geometry and material parameters used are
a=1, b=5, Young's modulus E=1.0×103 and Poisson's ratio 	=0.3.

The governing equations of this problem are given by Eqs. (1)–(3),
which are also used for the following numerical investigations. Sym-
metric boundary conditions are imposed on the left and bottom
edges, and the inner boundary of the hole is traction free. The cor-
responding exact solutions for the stresses in the plate are given in
the polar coordinate [27]:

�xx = 1 − a2

r2

(
3
2
cos 2
 + cos 4


)
+ 3

2
a4

r4
cos 4
 (41)

�xy = −a2

r2

(
1
2
sin 2
 + sin 4


)
+ 3

2
a4

r4
sin 4
 (42)

�yy = −a2

r2

(
1
2
cos 2
 − cos 4


)
− 3

2
a4

r4
cos 4
 (43)

where (r,
) are the polar coordinates and 
 is measured counter-
clockwise from the positive x-axis. The traction boundary conditions
given by the exact solutions (41)–(43) are imposed on the right (x=5)
and top (y = 5) edges.

Because the analytical solution is also available for this prob-
lem, the true error in the numerical solution of GSM can be exam-
ined. Using the present GSM, we start this benchmark problem from
approximately uniform refinement with 39, 98, 199, 403, 826 and
1513 field nodes. Also, four selected node distributions are shown in
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Fig. 7. Adaptive node distributions from the second to fifth step for solving Poisson's equation.

Fig. 8. Estimated global residual at each adaptive step for solving Poisson's equation.

Fig. 13. As given in Table 7, the true error norm of the displacement
ux is steadily reduced from 90.12% to 0.98%. This shows again that
the GSM has very good stability and accuracy. The adaptive analysis
using GSM starts with 39 nodes 'evenly' distributed in the quarter
model (see Fig. 13). The local refinement coefficient is set as �l=0.05
and the global residual tolerant coefficient is predefined as �g=0.05.

Table 6
True error norms of adaptive refinement for Poisson's equation with a sharp peak

Step

1 2 3 4 5

No. of field nodes 121 183 313 584 1107
Error norm (%) 33.54 8.66 3.09 1.10 0.56

Fig. 9. Comparison of error and convergence rate between uniform and adaptive
refinements for solving Poisson's equation with a sharp peak.
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As shown in Fig. 14, the adaptive analysis ends at the sixth step with
567 nodes irregularly distributed in the problem domain.

The estimated global residual at each adaptive step is plotted
in Fig. 15. One can observe that the global residual norm is grad-
ually reduced at each adaptive step. It demonstrates again the ex-
cellent stability of the GSM even when irregular nodes are used.

Fig. 10. Approximated values of field function u along the line y = 0.5 at the first
and fifth steps.

Fig. 11. The three-dimensional plots of adaptive GSM solutions for Poisson's equation with a sharp peak at the final adaptive step: (a) u; (b) �u/�x; (c) �u/�y.

The error norms of the displacement ux are given in Table 8. Com-
pared Table 8 with Table 7, the GSM with uniform refinement can

Fig. 12. Quarter model of the infinite plate with a circular hole subjected to a
unidirectional tensile load.
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Fig. 13. Node distributions of uniform refinement for quarter model of infinite plate: from 39 to 1513 nodes.

Table 7
True error norms of uniform refinement for infinite plate with a circular hole

No. of field nodes 39 98 199 403 826 1513
Error norm of ux (%) 90.12 39.68 6.59 1.67 1.12 0.98

only bring the true error norm down to 0.98% with 1513 nodes while
the error can be brought down to 0.48% using the GSM for adaptive
refinement with 567 nodes. As the node increases further, the error
norm reduces very slowly for the 'uniform' refinement case due to
the stress concentration that is not uniform but only near the hole.
However, for the GSM with the adaptive refinement, the error norm
is reduced at a steady rate, because of its ability to capture the stress
concentration. For validation purpose, the distributions of normal
stress �xx along the line x=0 at the third and sixth steps are plotted
in Fig. 16. It is very clear that the accuracy of both displacement
and stress has been improved a lot through the effective adaptive
scheme using the GSM for the stress concentration problem.

4.4. Short cantilever plate

In this example, the GSM is used for the stress analysis of a short
cantilever plate subjected to a uniformly distributed pressure on the
top, as shown in Fig. 17. The problem is solved as a plain strain
case with material properties E = 1.0, 	 = 0.3 and loading p = 1.0.
This problem has stress singularity near the two left corners, and

hence is very good for testing our adaptive GSM for stress singularity
capturing. As analyzed in the work of Johnson and Hansbo [28] and
Steeb et al. [29], the exact solution of energy norm ‖u‖ is defined as

‖u‖ =
(∫

�
rT�d�

)1/2
(44)

and found to be 1.379745. Since the analytical solution for the dis-
placements is not known, a reference solution is obtained using a
very fine mesh of 58060 degrees of freedom. The calculated energy
norm ‖uh‖ using this very fine mesh is 1.3794663, which is almost
the exact energy of 1.379745. The calculated value of displacement
in y-direction at the tip node A(1, 0) is −2.875323.We assume this
value as reference 'exact' solution.

The uniform refinement for this example uses six regular meshes
with 73, 214, 488, 755, 1376 and 2498 evenly distributed nodes.
Four such distributions of nodes are shown in Fig. 18. The GSM
solutions of displacement uy(A), energy norm and their error norms
are presented in Table 9. In this paper, the relative error in energy
norm is defined as

ee =
∣∣∣∣ ‖uh‖ − ‖u‖

‖u‖
∣∣∣∣ (45)

As the uniform refinement advances, both the displacement uy(1, 0)
and energy norm approach the 'exact' (reference) solutions gradually.
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Fig. 14. Node distributions of adaptive refinement at the third and sixth steps for the quarter model of infinite plate with a circular hole.

Fig. 15. Estimated global residual at each adaptive step for the infinite plate.

Table 8
True error norms of adaptive refinement for infinite plate with a circular hole

Step

1 2 3 4 5 6

No. of field nodes 39 99 158 197 395 567
Error norm of ux (%) 90.12 8.88 3.01 2.18 0.78 0.48

The adaptive refinement starts with the same coarse mesh of 73
field nodes as shown in Fig. 18. The local refinement coefficient is
predetermined as �l=0.05 and the global residual tolerant coefficient
is set as �g =0.05. As shown in Fig. 19, the adaptive analysis ends at
the sixth step with 1889 nodes distributed irregularly in the whole
plate domain. Due to the stress concentration in this problem, more
nodes are added into the two corner areas at the left side of the
plate (see Fig. 19). It can be observed from Fig. 20 that the estimated
global residual is monotonically reduced as nodes increase. Table 10
presents displacement at point A, energy and their error norms for
each adaptive step. Comparedwith the results of uniform refinement,
the GSM with adaptive scheme is clearly more effective. It leads to a

Fig. 16. Normal stress �xx along x = 0 at the third and sixth steps.

Fig. 17. A short cantilever plate subjected to a uniformly distributed pressure on
the top.
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Fig. 18. Node distributions of 'uniform' refinement for short cantilever plate.

Table 9
Error norms of uniform refinement for short cantilever plate

No. of field nodes 73 214 488 755 1376 2498

uy (1, 0)
GSM

Value −2.5170 −2.6748 −2.7397 −2.7592 −2.7901 −2.8094
Error norm (%) 12.46 6.98 4.72 4.04 2.96 2.29

FEM
Value −2.7581 −2.8277 −2.8503 −2.8575 −2.8643 −2.8685
Error norm (%) 4.08 1.65 0.87 0.62 0.38 0.24

Energy
GSM

Value 1.2867 1.3344 1.3521 1.3566 1.3642 1.3683
Errornorm (%) 6.74 3.29 2.00 1.68 1.13 0.83

FEM
Value 1.3492 1.3668 1.3727 1.3746 1.3764 1.3776
Error norm (%) 2.21 0.94 0.51 0.37 0.24 0.16

very fine accuracy using much less nodes, as shown in Figs. 21 and
22. The comparison of convergence rate in energy norm between
uniform and adaptive refinements is demonstrated in Fig. 23. The
convergence rate obtained using the adaptive scheme with GSM is
much higher than that of uniform refinement.

For comparison purpose, we now study the present problem us-
ing linear FEM with both uniform and adaptive models with the
same set of initial nodes as that used in the GSM. The adaptive
procedure used in the FEM is also the same as that used in adaptive

GSM with the same tolerant coefficients. Table 9 also presents the
FEM solutions of displacement uy(A), energy norm and their error
norms for the uniform refinement. Table 11 presents displacement
at point A, energy and their error norms for each adaptive step. The
comparisons of GSM and FEM with both uniform and adaptive re-
finements are plotted in Figs. 21 and 22. The energy errors of the
numerical results calculated using Eq. (45) are plotted in Fig. 23 with
respect to h. Here, h is taken as the average nodal spacing for differ-
ent nodal configurations. The results show that the adaptive mod-
els for both GSM and FEM have obtained higher convergence rate
than uniform refinements. This demonstrates the effectiveness of the
present adaptive procedure. Second, compared with FEM, the GSM
achieves much higher convergence rate for adaptive refinement.

Fig. 24 presents the comparison of condition numbers of the co-
efficient matrix for both uniform and adaptive refinements. For uni-
form refinement, GSM has almost the same condition numbers as
those of FEM. However in adaptive procedure, GSM produces much
smaller condition numbers than FEM, which demonstrates the ex-
cellent stability of our present GSM.

4.5. L-shaped plate

Fig. 25 shows an L-shaped plate subjected to a tensile force p=10
in the horizontal direction. This is a classical problem to examine
adaptive refinement schemes [5,14]. Since there is a singular point at
the concave corner, an adaptive scheme is again required to identify
the point of singularity and to refine the region around the node. This
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Fig. 19. Node distributions of adaptive refinement at the third and sixth steps for short cantilever plate.

Fig. 20. Estimated global residual at each adaptive step for short cantilever plate.

Table 10
Error norms of adaptive refinement for short cantilever plate using GSM

Step 1 2 3 4 5 6
No. of field nodes 73 193 400 657 1109 1889

uy (1, 0)
Value −2.5170 −2.7557 −2.8304 −2.8405 −2.8561 −2.8620
Error norm (%) 12.46 4.16 1.56 1.21 0.67 0.47

Energy
Value 1.2867 1.3496 1.3647 1.3712 1.3751 1.3768
Error norm (%) 6.74 2.18 1.09 0.62 0.34 0.21

example is investigated as a plain stress problem. The geometry and
material parameters used are a = 5, Young's modulus E = 3.0 × 107

and Poisson's ratio 	 = 0.3. The boundary conditions are imposed as
demonstrated in Fig. 25. As the exact solution for total strain energy
is not available, a reference solution is obtained using linear FEM
with a very fine mesh of 8732 nodes. The computed energy norm is
3.220292 × 10−2, which is assumed as the reference solution.

Fig. 21. Comparison of displacement uy(1, 0) for short cantilever plate between GSM
and FEM with uniform and adaptive refinements.

Fig. 22. Comparison of computed strain energy for short cantilever plate between
GSM and FEM with uniform and adaptive refinements.
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Fig. 23. Comparison of error and convergence rate in energy norm for short cantilever
plate between GSM and FEM with uniform and adaptive refinements.

Table 11
Error norms of adaptive refinement for short cantilever plate using FEM

Step 1 2 3 4 5 6 7
No. of field
nodes

73 127 209 370 541 1016 1614

uy (1, 0)
Value −2.7581 −2.8039 −2.8222 −2.8439 −2.8532 −2.8606 −2.8643
Error norm
(%)

4.08 2.48 1.85 1.09 0.77 0.51 0.38

Energy
Value 1.3492 1.3620 1.3664 1.3726 1.3747 1.3762 1.3770
Error norm
(%)

2.21 1.29 0.97 0.52 0.36 0.26 0.20

We also start this example from 'uniform' refinement with 108,
369, 710, 1430, 2194 and 2948 nodes, respectively. Four selected dis-
tributions of nodes are shown in Fig. 26. The values of strain energy
and its error norm are given in Table 12. The adaptive analysis starts
with an initial mesh of 108 uniformly distributed nodes (see Fig. 26).
The local refinement coefficient is predefined as �l = 0.025, and the
global residual tolerant coefficient is �g = 0.05. The adaptive refine-
ment ends at the fifth step with 1489 irregular nodes in the problem
domain. The node distributions of third and fifth steps are plotted
in Fig. 27, which shows that the adaptive scheme is able to detect
the singular point and refine the surrounding area accordingly. The
calculated strain energy and its error norm for each adaptive step
are presented in Table 13. From the comparison of energy norm be-
tween Tables 12 and 13, it is observed that the adaptive scheme
converges to the reference solution much faster. The comparison of
convergence rate in energy norm is shown in Fig. 28. Since the adap-
tive scheme can automatically refine the high stress region near the
concave corner, it obviously accelerates the process of convergence,
and hence improves the accuracy.

4.6. Mode-I crack problem

In this example, a Mode-I crack problem is considered for adap-
tive analysis. A square plate with sides of length 2a and a crack of
length a is used, as shown in Fig. 29(a). The exact displacement and

Fig. 24. Comparison of condition number of the coefficient matrix for short cantilever
plate between GSM and FEM with uniform and adaptive refinements.

Fig. 25. L-shaped plate subjected to a tensile load in the horizontal direction.

stress solutions in the crack tip neighborhood are given by [30,31]

ux = KI
2�

√
r
2�

cos
(



2

)[
� − 1 + 2 sin2

(


2

)]
(46)

uy = KI
2�

√
r
2�

sin
(



2

)[
� + 1 − 2 cos2

(


2

)]
(47)

�xx = KI√
2�r

cos


2

(
1 − sin



2
sin

3

2

)
(48)

�yy = KI√
2�r

cos


2

(
1 + sin



2
sin

3

2

)
(49)

�xy = KI√
2�r

sin


2
cos



2
cos

3

2

(50)



904 J. Zhang et al. / Finite Elements in Analysis and Design 44 (2008) 889 -- 909

Fig. 26. Selected node distributions of uniform refinement for L-shaped plate.

Table 12
Error norms of uniform refinement for L-shaped plate

No. of field nodes 108 369 710 1430 2194 2948

Strain energy 3.5135E−2 3.3590E−2 3.3234E−2 3.2895E−2 3.2787E−2 3.2726E−2
Error norm (%) 9.11 4.31 3.20 2.15 1.81 1.62

Fig. 27. Node distributions of adaptive refinement at the third and fifth steps for L-shaped plate.
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where r is the distance from the crack tip and 
 is the angle measured
from the line of the crack. The stress intensity factor is prescribed as
KI = √

2�. � is the shear modulus, and � is defined as

� = 3 − 	
1 + 	

plane stress

� = 3 − 4	 plane strain (51)

The problem is solved as a plain strain case with geometry and ma-
terial parameters a= 1, E = 3.0× 107, 	 = 0.3. Due to the symmetry,
only upper half of the plate is modeled, as shown in Fig. 29(b). To
extend the above solutions to the whole studied domain, we im-
pose on the square plate boundary (the upper, left and right edges)

Table 13
Error norms of adaptive refinement for L-shaped plate

Step

1 2 3 4 5

No. of field nodes 108 242 538 817 1489
Strain energy 3.5135E−2 3.3378E−2 3.2824E−2 3.2515E−2 3.2346E−2
Error norm (%) 9.11 3.65 1.93 0.97 0.44

Fig. 28. Comparison of error and convergence rate in energy norm between uniform
and adaptive refinements for L-shaped plate.

Fig. 29. Mode-I crack problem: (a) geometry and (b) half model with boundary conditions.

Fig. 30. Selected node distributions of uniform refinement for Mode-I crack problem.
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Table 14
Error norms of uniform refinement for Mode-I crack problem

No. of field nodes 76 252 542 848 1481 2717
Error norm of uy (%) 49.68 29.03 21.13 17.37 13.85 10.64
Energy
Value 2.8491E−4 2.9301E−4 2.9798E−4 3.0067E−4 3.0333E−4 3.0588E−4
Error norm (%) 9.45 6.88 5.30 4.44 3.60 2.79

the exact traction. Essential boundary conditions are applied as
demonstrated in Fig. 29(b). Six distributions of uniform nodes,
76, 252, 542, 848, 1481 and 2717, are first investigated. Fig. 30
shows the selected node distributions. Similarly, the reference so-
lution of strain energy, 3.146553 × 10−4, is obtained using FEM
(Gauss integration) with a very fine mesh of 9600 nodes based
on analytical solutions of stress components. The computed dis-
placement error in y-direction (uy), strain energy and its error
norm are presented in Table 14. It can be observed that both the
displacement uy and energy norm approach the exact (reference)
solutions as nodes increase. However, the displacement error re-
duces very slowly due to the stress singularity near the crack tip.
The error is still bigger than 10% with 2717 evenly distributed field
nodes.

As shown in Fig. 30, the distribution of 76 field nodes is started for
adaptive refinement. The local refinement coefficient is prescribed as
�l=0.05 and the global residual tolerant coefficient is set as �g=0.05.
As shown in Fig. 31, the adaptive analysis ends at the ninth step with
1144 extremely irregular nodes in the half plate domain. Due to
stress concentration at the crack tip, a large number of nodes are in-
serted into the crack tip neighborhood (see Fig. 31). Table 15 presents
displacement error in y-direction, energy and its error norm for each
adaptive step. Compared with uniform refinement, the adaptive
scheme is muchmore effective. The displacement error of uy reduces
as adaptive refinement goes. The comparisons of energy error and
its convergence rate between uniform and adaptive refinements are
presented in Fig. 32. It can be easily found that the GSM using adap-
tive scheme converges more than two times faster than uniform
refinement.

4.7. Singular loading problem

To further examine the capability of our strong form GSM,
a square solid subjected to a singular loading P = 1 at the cen-
ter of the top edge is studied, as shown in Fig. 33. The solid
is constrained in x and y directions along the left, right and
bottom sides, respectively. This problem is solved as a plain
strain case with geometry and material parameters as a = 10,
E = 1.0 × 107, 	 = 0.3.

This singular loading case is studied using the GSMwith both uni-
form and adaptive models. For the uniform refinement, the problem
domain is presented using 121, 625, 1681 and 3721 nodes (regular
right triangular meshes), respectively, similarly as shown in Fig. 6
(regular left triangular meshes). For the adaptive procedure, 11 steps
of adaptive refinement are performed with �l = 0.1 and the nodal
configuration at the sixth and eleventh steps is shown in Fig. 34. The
figure shows that the present adaptive GSM can accurately catch the
steep gradient of stresses and the occurrence of refinement properly
concentrates around the point with singular loading. The displace-
ments in x and y directions along the line y = 5 for both uniform
and adaptive refinements are plotted in Figs. 35 and 36, respectively.
For this problem, the reference solutions are obtained using adap-
tive FEM with a very fine mesh of 7431 nodes. In Fig. 37, the val-
ues of strain energy are presented for the results of uniform and
adaptive refinements. The reference solution of the strain energy
is 4.2812 × 10−3. It can be concluded that the present GSM with

Fig. 31. Node distributions of adaptive refinement at the third, fifth, seventh and
ninth steps for Mode-I crack problem.
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Table 15
Error norms of adaptive refinement for Mode-I crack problem

Step 1 2 3 4 5 6 7 8 9
No. of field nodes 76 115 224 275 364 595 710 832 1144
Error norm of uy (%) 49.68 30.18 15.74 13.15 12.92 7.63 6.27 4.53 2.18
Energy

Value 2.8491E−4 2.9463E−4 3.0395E−4 3.0474E−4 3.0774E−4 3.1021E−4 3.1148E−4 3.1188E−4 3.1258E−4
Error norm (%) 9.45 6.36 3.40 3.15 2.20 1.41 1.01 0.88 0.66

Fig. 32. Comparison of error and convergence rate in energy norm between uniform
and adaptive refinements for Mode-I crack problem.

Fig. 33. A square solid subjected to a singular loading at the center of the top edge.

adaptive procedure can effectively produce reliable results for prob-
lems with high stress concentration, singular points and even sin-
gular loading.

5. Discussion and concluding remarks

In the current work, a gradient smoothing method (GSM) based
on a strong form of governing equations is developed for solid me-
chanics problems: (1) In the present method, different types of
smoothing domains are devised in a novel manner and used for ap-
proximation of derivatives. (2) The GSM can be used for mechanics
problems with any arbitrarily irregular domains, singularities, and
singular loading, which is very difficult for a strong form method.
Both stability and accuracy have been demonstrated in comparison
with the widely used FEM. The GSM has exhibited even much bet-
ter than the FEM for adaptive analysis judging from the condition
numbers. (3) Due to the excellent stability, the GSM is further ex-
tended to adaptive analysis and found effective. A simple yet robust
residual based error indicator is adopted in our adaptive procedure.
By approximating the residual of the governing equation in the do-
main, this error indicator can efficiently capture the region to be
refined.

In the paper, our formulation is focused on 2D problems. The idea
and general procedure of the GSM can, however, be generalized to 3D
problems. The challenge will be in the construction of 3D smoothing
domains and coding.

The present GSM has not yet formulated for solving the vol-
ume locking problem, for which especial techniques are needed.
A large number of such techniques have been developed by many
researchers for weak form methods, one of which is the so-called
"selective” formulation. If the selective formulation is used in
the GSM formulation with proper design of smoothing domains, the
GSM should also be able to solve this type of locking problems. The
authors believe that formulation towards this direction needs a lot
more careful consideration and intensive investigation. Hence leave
this topic for our further study.

From intensive numerical studies carried out on several bench-
mark problems with and without singularities, the following conclu-
sions can be drawn:

1. The GSM can reproduce linear fields regardless of the types of
boundary conditions (essential or natural). Hence, the solution
will converge to any higher-order continuous fields as the field
mesh is refined.

2. The study of numerical examples shows that the proposed GSM
not only can obtain accurate and stable results but also is suc-
cessful in the implementation for adaptive analysis with steady
convergences.

3. For problems without singularity, even though there is no signif-
icant improvement in the convergence rate compared with the
uniform refinement, our adaptive GSM can lead to solutions with
much higher accuracy.

4. For problems where singular points exist, nearly optimal nodal
distributions are generated automatically in the process of adap-
tive analysis. As a result, far less degrees of freedom are needed to
achieve the desired accuracy compared with uniform refinement.

5. In summary, we conclude that the GSM is a stable, robust and
reliable numerical method based on strong form formulation for
adaptive analysis of solid mechanics problems.
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Fig. 34. Node distributions of adaptive refinement at the sixth and eleventh steps for singular loading problem.

Fig. 35. Comparison of displacement ux(x, 5) between uniform and adaptive refine-
ments.

Fig. 36. Comparison of displacement uy(x, 5) between uniform and adaptive refine-
ments.

Fig. 37. Comparison of strain energy between uniform and adaptive refinements.
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